Flow equivalent trees in undirected node-edge-capacitated planar graphs

نویسندگان

  • Xianchao Zhang
  • Weifa Liang
  • He Jiang
چکیده

Given an edge-capacitated undirected graph G = (V ,E,C) with edge capacity c :E → R+, n = |V |, an s − t edge cut C of G is a minimal subset of edges whose removal from G will separate s from t in the resulting graph, and the capacity sum of the edges in C is the cut value of C. A minimum s − t edge cut is an s − t edge cut with the minimum cut value among all s − t edge cuts. A theorem given by Gomory and Hu states that there are only n− 1 distinct values among the n(n− 1)/2 minimum edge cuts in an edge-capacitated undirected graph G, and these distinct cuts can be compactly represented by a tree with the same node set as G, which is referred to the flow equivalent tree. In this paper we generalize their result to the node-edge cuts in a node-edge-capacitated undirected planar graph. We show that there is a flow equivalent tree for node-edge-capacitated undirected planar graphs, which represents the minimum node-edge cut for any pair of nodes in the graph through a novel transformation. © 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial Algorithms for (integral) Maximum Two-flows in Vertex Edge-capacitated Planar Graphs

In this paper we study the maximum two-flow problem in vertexand edge-capacitated undirected STI-planar graphs, that is, planar graphs where the vertices of each terminal pair arc on the same face. For such graphs we provide an O(n) algorithm for finding a minimum two-cut and an O(n log n) algorithm for determining a maximum two-flow and show that the value of a maximum two-flow equals the valu...

متن کامل

Node-Capacitated Ring Routing

We consider the node-capacitated routing problem in an undirected ring network along with its fractional relaxation, the node-capacitated multicommodity flow problem. For the feasibility problem, Farkas’ lemma provides a characterization for general undirected graphs asserting roughly that there exists such a flow if and only if the so-called distance inequality holds for every choice of distan...

متن کامل

Replacement Paths via Row Minima of Concise Matrices

Matrix M is k-concise if the finite entries of each column of M consist of k or fewer intervals of identical numbers. We give an O(n + m)-time algorithm to compute the row minima of any O(1)-concise n×m matrix. Our algorithm yields the first O(n+m)-time reductions from the replacement-paths problem on an n-node m-edge undirected graph (respectively, directed acyclic graph) to the single-source ...

متن کامل

MATHEMATICAL ENGINEERING TECHNICAL REPORTS The Complexity of the Node Capacitated In-Tree Packing Problem

This paper describes a node capacitated in-tree packing problem. The input consists of a directed graph, a root node, a node capacity function and edge consumption functions. The problem is to find the maximum number of rooted in-trees such that the total consumption of in-trees at each node does not exceed the capacity of the node. The problem is one of the network lifetime problems that are a...

متن کامل

Degree-constrained spanning trees

S of the Ghent Graph Theory Workshop on Longest Paths and Longest Cycles Kathie Cameron Degree-constrained spanning trees 2 Jan Goedgebeur Finding minimal obstructions to graph coloring 3 Jochen Harant On longest cycles in essentially 4-connected planar graphs 3 Frantǐsek Kardoš Barnette was right: not only fullerene graphs are Hamiltonian 4 Gyula Y. Katona Complexity questions for minimally t-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 100  شماره 

صفحات  -

تاریخ انتشار 2006